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A physical interpretation of the Landau damping is given based on the Vlasov equations. It is shown that
Landau’s discussion and Kidal’s calculation of resonant energy absorption are equivalent. It is also found
possible to compare the analysis based on the Viasov equations to Dawson’s intuitive formulation.

1. INTRODUCTION

HE problem of plasma oscillations has been dis-
cussed by many authors.! The well-known
solution by Landau who used the Laplace transform
method, had shown that in general a damping exists.
For a collision-free plasma, this phenomenon seems
rather puzzling.

In an attempt teznterpret the origin of such damping
several theories hije been proposed, namely (1) electron
trapping,? (2) ph?,‘s'é{ mixing,? and (3) resonant energy
absorption.4

In general, the first two theories are difficult to main-
tain. Some of the ghgument can be seen from the
examples given by:Simon.® The explanation based on
energy absorption by resonant electrons is likely the
most reasonable theory. Recently Dawson® has given a
fairly thorough dis¢ussion on this subject. Using the
resonant energy absorption model, he is able to show
the Landau damping in an intuitive formulation.
Furthermore, several points regarding the theory given

*The present work was done at the Theoretical Physics
Division, Atomic Energy Research Establishment, Harwell,
England, but was financially supported by NASA Contract
No. NASw-6.
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by Jackson® who considered the electron trapping
model, are also clarified in his discussion. Quite inde-
pendently, Kidal*®.7 attempted to explain the Landau
damping based on a similar model but started with a
different mathematical formulation. He calculated the
energy absorption A4, i.e.,

AA=e< / f / El-vf(v)d3v>w, 1)

where () denotes mean value in time and the subscript
“av” denotes average in space. The damping coefficient
v is then determined from the assumption that the time
rate of decay of the wave energy mustrequal the ab-
sorbed energy. The general results contained in his two
papers are interesting, but there are a few disagreements
with previously existing results. For example, the
Landau damping in the case of pure longitudinal oscilla-
tions obtained by him is different by a factor % from
that found by Landau.® He mentioned that the reason
for this deviation may be the different methods of
approach. This is not true as is shown later in this note.
The present note makes some remarks on the same
subject and may suggest a physically clearer view of
Landau’s work. In the following, we see that the disper-
sion relation in Landau’s work,?
wp2 1 aF 0
—du—1=0,
kBnol ¢ (u—w/K) ou

is equivalent to some energy relation. Our discussion is

7 A. Kidal, J. Nuclear Energy (Part C) 3, 256 (1961).

8 Actually the difference is by a factor (—2)(—1), as we shall
see later.

? Notation is explained in later discussion.
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based on the Vlasov equations. However, we see that
some of the discussion is comparable with Dawson’s
theory. It is the author’s opinion that if Landau damp-
ing is a physically sensible phenomenon, we ought to
be able to explain it within the scope of the Viasov
equations. This is the main purpose of the following
discussion.

2. ENERGY CONSERVATION AND
DISPERSION RELATION

It is not difficult to show that in the absence of
external fields, the linearized Vlasov equations can be
decoupled into longitudinal and transverse components.
In the present discussion, we consider only the longi-
tudinal component since Landau damping does not
appear in transverse waves.

The longitudinal component of the linearized Vlasov
equations actually contains three equations

d d
_'_f_l.-{...v.vfl:—__e_El._f? <2)
a! m v
V-E1=41re/f1d3v. (3)
Ik,
—= —-41re/vf1d"’v. 4)
ol

where f1 and E; arc the perturbed distribution function
and field, respectively, and fp is the equilibrium distri-
bution function. It is important to remark that (3) and
(4) are not independent; therefore we can solve the
problem of longitudinal oscillation by using Eq. (2) to-
gether with either (3) or (4). Tt is true that (2) and (3)
are commonly used.
If we multiply both sides of (4) by Ei, we obtain

9 fES
_<—>=—8/E1'Vf1d31‘. (5)
OI\8x .

Clearly, (5) states the conservation of energy corre-
sponding to the first order quantities. The right-hand
integral gives the average work done by the electrical
field on the electrons or simply the energy transferred
to the electrons® per unit time per unit volume, and the
left side gives the time rate of change of the electrical
field encrgy density. If we take the average in space and

1 We will confine our discussion to the “damped wave” solution
only. In general, of course, there may exist “growing wave”
solutions. Evidently, the nature of the solutions is dictated by the
equilibrium distribution function Fy. It has been shown by I Berz
[Proc. Phys. Soc. (London) B69,939 (1956)]and J. D). Jackson®®
that for an isotropic or single-humped Fy, the growing wave
solution cannot exist. All these discussions are beyond the scope
of the present paper and thercfore are omitted.
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in time of Eqg. (5), we obtain

av

which is precisely the relation used by Kidal who arrived
at this relation by intuition.t®

Since Eq. (3) and Eq. (6) are essentially equivalent,
we conclude that Landau’s solution must satisfy (6).
However, in the following, we give an alternative
discussion on Landau damping so that its physical
origin is easily displayed.

Let us consider a particular Fourier component of the
waves. As we know, if we assume

Si~expli(kz—wt)],
E1’\‘ CXP[i (kx"' wt)]y

where k is taken to be in the x direction, we can get the

same dispersion relation as that based on the Laplace

transform method provided the singular integral is

properly defined. Then from Eq. (2), fi is determined
1:6 E1

afo
fim—— (@)
m k(u—w/k) ou
It can be easily shown that the well-known dispersion
relation,
O.)pz 1 61"0
1— —du=0), (8)
Byl ¢ (u—w/k) du

is obtainable from (5) or (6). In (8), u is the velocity
component parallel to k and

Folu)= / folu,vi)dvy,

where v, is the vector component of v normal to k. ¢’
denotes the Landau contour.}® That is, if the root w/k
is located in the upper half of the complex % plane the
contour is along the real # axis, and if the root w/k is
in the lower half-plane the contour is first along the
real  axis and then around the point #=w/k as shown
in Fig. 1. However, we are not particularly interested
in doing this. Our discussion is mainly concerned with
Eq. (6) which is physically more tractable.

3. LANDAU DAMPING AS RESONANT
ENERGY ABSORPTION

If we insert Eq. (7) into Eq. (5), we obtain

9 Ef

at 8r

w, Ef r*°  u

— — —du. (9)
Eny 41 ), u—w/k du

Let us be less formal and use Eq. (9) rather than (0).
For the long-wavelength limit, we assume a priori that
w=w41y and y/k — 0, # — 0, and then expand the
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integral in Eq. (9) up to O(y). Thus
a E12 iwpz E12 i u 6F0
el il / L T
ot 8x kng 4 J o u—w/k Ou
iw,,z E12 © U aFo Ywr 6‘3F0
_ *{P/ S P WP
kg 4 o U—wr/k Ou k? ou?

Wy 8F0
Fir— —
k ou

Y b 1 al“o
+1i —[P / ———du
S o U—w./k Ou

© u  9*F,
+P/ ~——————du:H, (10)
o U—w, kU
where P denotes principal value. For definiteness, we
have considered that v is positive here. However,
according to the similar definition of the singular
integral given by Landau, it can be easily shown that
the present analysis is also valid for negative v.
Furthermore, it must be remarked here that in order
to do this calculation correctly we definitely ought to
keep the terms up to O(vE?/4r) in the expansion (at
least for the imaginary part of the integral). It can be
seen that if the last two terms are ignored, we get the
incorrect result:

wwiw,’ OF
y= —_— . (11
BPro 0ubuun

It is instructive to compare Eq. (10) with Dawson’s
analysis.® For convenience, we also imagine that the
plasma may be divided into two parts: the main plasma
and the resonant electrons. The main plasma consists
of all the electrons with velocities us#w,/k, and the
resonant clectrons possess the phase velocity of the
wave, i w, k. Then, it may be visualized that evalua-
tion of the principal part of each of the above integrals
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is equivalent physically to considering only the main
plasma and excluding the resonant electrons.
Furthermore, since the last two terms have coeffi-
cients of O(y), we only need to evaluate the two inte-
grals to zeroth order in 7.
We shall make use of the following expressions:

*° 1 aFa o k2

P/ —_—— —du= +0(y), (12)

o U—w,/k Ou wp?

i w 32F(, &y % 1 '32F9
P/ —_ du=—P —_— du

o U—w,/k O k Jow t—w/k ou?

2k2no
=— +0(y), (13)

wp2[1 - (k/wr) (dwr/dk)]

where (13) is obtainable from (12) by integration by
parts. These two terms in Eq. (10) represent part of the
contribution from the main plasma.

Since we are only interested in computing the damp-
ing coefficient, we need only to consider Eq. (10) in the
following form:

2y / £
[1— (k/w.) (deo/dk)] \8r )

T,y w,(E1 >6P o]
Fno \8w / ou luw,,k,
where relations (12) and (13) have been employed.
The right-hand term, which originally came from the

s-function term in the Dirac relation when we expanded
the integral in Eq. (9), is the energy absorbed by the

resonant electrons. Thus
k dew,
(-2
Uu=wy/k Wy dk

For very long wavelengths, the ratio of the group
velocity dw,/dk and the phase velocity w./k becomes
so small that (15) gives essentially Landau’s approxi-
mate result if we insert

m \} mu?
ol
2o T 2«T

It is interesting to remark that we have the effective
longitudinal-wave energy density in the main plasma:

(14)

Twywr OF

2k2ﬂ0 ou

(18)

Fo(n)= no<

2
87r[1 —(k/w, )(dw,/dk)]

U“J\L

which, as well as the result for the resonant absorption,

N If we compute y from (15) Carelully based on the Maxwellian
distribution, we will find Landau’s approximate calculation is
bigger by expti). This error was first pointed out by A G. Sitenko
and K. N. blqnnu», Soviet Phys.—JETY 4, 312 (1957) and later
by J. D. Jackson [reference 2(b)7.
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is in perfect agreement with that calculated by Dawson
through an intuitive formulation.

The discussion of the short-wavelength case based on
the same model can be done similarly. However, we
shall omit it since physically the problem is not
interesting.

4. DISCUSSION OF KIDAL’S CALCULATION

As mentioned at the beginning of this paper, the
calculation of Landau damping by Kidal gives a result
with a factor § missing. But in fact the deviation is more
than this. In Kidal’s discussion'? the perturbed distribu-
tion function f; has an incorrect leading sign. If we make
this correction, his result for Landau damping would
differ from Landau’s result by a factor —%. However,
he considers

W= w1y,

and integrates the energy absorption integral,

o0

Ad=—¢ / du (f () Btdyas,

along the real axis in the x plane without using the
Landau contour. This introduces a second error of sign
in front of the term related to the § function, and there-
fore eventually the deviation is by a factor (—3)(—1).
The main error which results in the incorrect damping
coefficient is due to the fact that during the computation
of the resonant energy absortion, i.e.,
e2
AA=———(E¢ exp(—2vt))
T
0 1

X / due Fo(1e)? ,
o {1+ (ku—w.) /v ]}

Kidal approximates (zy{1+[(kx—w.)/v}}) by the s
function §(k#—w,). This implies that the integral is
only evaluated to zeroth order in y. As we mentioned
before, this is not correct. We must compute the prin-
cipal part in addition to the é-function part. With all
these remarks the correct expression for A.l should
thus be

(16)

&2

© Y
. (b,

2T
Wy wr\ |
— r—Fo(——>J . an
ke k

1 See, for instance, reference 4(b), LKq. (25).
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This first integral is evidently equivalent to the last
two terms in Eq. (10) of our previous discussion. (Note:
Here Fy is Maxwellian).

5. CONCLUSIONS

The present note has presented a physical interpreta-
tion of Landau’s dispersion relation,® with the following
results:

(1) Landau’s dispersion relation_and Kidal’s calcula-
tion of energy absorption have been shown to be
essentially equivalent.

(2) A brief comparison with Dawson’s analysis has
been made and the general results are in complete
agreement.

(3) The errors in Kidal’s calculation have been
pointed out.

Since in the linearized theory it is required that

1 m \?}
—<<(——) ~T, (trapping time),
Y k] Eo] e

the trapping theory, as pointed out by Dawson pre-
viously, is not acceptable,to explain the Landau damp-
ing which is found in the linear theory. The origin of
the damping is mainly due to the encrgy absorption of
the resonant electrons. However, one remark which
should be made herc is that from the result for the
damping coefficient we see that, in order to have damp-
ing well defined for a finite time interval, we must have
a continuous distribution Fo(#) at least in the vicinity
of u=w,/K. This is certainly reasonable. Since, for a
discrete distribution,

Fo(u)=8(u—w./k),

the resonant electrons will be out of phase with the
wave after absorbing energy from the wave and being
accelerated during an infinitesimal time interval.
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¥ We have used the name “dispersion relation” loosely since,
strictly speaking, Eq. (8) should not be called the dispersion
relation.




